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"Critical Clusters" in a Supersaturated Vapor: 
Theory and Monte Carlo Simulation 
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A new thermodynamic analysis is given for the equilibrium between a liquid 
cluster and the surrounding supersaturated gas phase in a finite constant 
volume. It is shown that  for constant  total density and intermediate volume 
this equilibrium is stable, al though it is unstable for very large volume. We 
show that  observation of the critical cluster size l* then yields information 
on the surface free energy of the liquid cluster. The accuracy of previous 
approximate prescriptions for obtaining the free energy of physical clusters 
is investigated. As an application, the theory is used to analyze Monte  
Carlo simulations of the two-dimensional lattice gas model at low tempera- 
tures. We obtain cluster surface area, diffusivity, and free energy for clusters 
with 26 ~ l ~< 500. It is found that  the capillarity approximation is in- 
accurate for l ~< 100, but the free energy of small clusters is higher than the 
result of classical nucleation theory, in contrast  to what one expects from 
Tolman-like corrections. We interpret these results, deriving low-tempera- 
ture series expansions for very small clusters, thus showing that  the capillarity 
approximation both underestimates the surface energy and overestimates 
the surface entropy of very small clusters. Finally, we use our results to give 
a speculative explanation of recent nucleation experiments. The dependence 
of the cluster diffusivity on cluster size is tentatively explained in terms of a 
crossover between two mechanisms yielding different power laws. 

KEY W O R D S  : Nucleat ion ; cluster di f fusion ; lat t ice gas ; computer  s imula- 
t ion ; critical cluster ; binary alloy. 

1.  I N T R O D U C T I O N  

C a l c u l a t i o n  o f  t he  t r a n s f o r m a t i o n  r a t e  o f  u n s t a b l e  (o r  m e t a s t a b l e )  p h a s e s  v ia  

t h e  n u c l e a t i o n  m e c h a n i s m  is a n  i m p o r t a n t  p r o b l e m  in m a n y  b r a n c h e s  o f  

phys i c s  a n d  c h e m i s t r y .  <l-s~ A l t h o u g h  t he  c o n c e p t s  o f  th i s  t h e o r y  a re  n o w  
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fairly well understood in the framework of more general considerations of 
statistical mechanics, applications of the theory still suffer from the lack of 
knowledge on the free energy of formation of small "clusters" of the new 
phase. The standard procedure (" classical nucleation theory")  is to apply an 
extrapolation using the surface tension between macroscopic bulk phases to 
calculate the surface free energy of very small clusters, the so-called "capil- 
larity approximation." ~1-4> It turns out that this simple model accounts fairly 
well for many experiments at rather low temperatures (e.g., Refs. 6 and 7), 
while it fails to describe nucleation in the region near the critical point (e.g., 
Refs. 8 and 9), where the predicted nucleation rates are by far too high. These 
findings are surprising for several reasons: (i) At low temperatures the 
"critical clusters" contain only about 10-1000 molecules, while they contain 
104-106 molecules near the critical point. Thus one expects a macroscopic 
extrapolation to hold in the latter temperature region rather than in the 
former. (ii) "Thermodynamic"  arguments suggest that the surface tension 
of a small drop depends significantly on its radius of curvature, and predict 
that the surface free energy of small clusters is distinctly lower than that which 
would follow from the capillarity approximation (" Tolman correction" ~0-12~. 
(iii) Inclusion of rotation and translation of the droplet distinctly decreases 
the free energy barrier for the formation of small droplets (" Lothe-Pound 
correction ''(la,14~ in comparison with that of the classical theory. Both 
corrections imply that the nucleation rates should be much higher than 
actually observed. (iv) Use of a smooth density profile for the droplets, which 
follows from a Ginzburg-Landau equation for the nonuniform density, also 
leads to a decrease of the barrier (Cahn-Hilliard theory (15~ and variants 
thereof(46.17~). 

Clearly, it is very questionable that an extrapolation in terms of the sur- 
face tension between macroscopic phases is applicable for clusters of 10-1000 
molecules, and all these corrections may be misleading since one needs a 
"microscopic surface tension" for these small clusters, (18~ But the use of the 
Fisher droplet model (ag~ suggested by Kiang et  al. (~8,2~ to determine this 
microscopic surface tension either by a fit to critical point parameters ( ~  or a 
fit to the second virial coefficient (21~ has also been shown to be a procedure 
generally inaccurate (see, e.g., Appendix A of Ref. 5). 

A more rigorous treatment was given by Gillis et  al. ~22~ for a one- 
dimensional model. Since one-dimensional fluids with short-range forces do 
not possess a nonzero gas-fluid critical point, no supersaturated one-dimen- 
sional vapor exists. Also, cluster "shapes"  in one dimension are very 
restricted, and hence the extrapolation of these results to higher dimension- 
ality is delicate. In the absence of any theories by which the properties of 
higher dimensional clusters containing 10-1000 molecules can be calculated 
from first principles, computer techniques are clearly very valuable to obtain 
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these properties numerically. However, the many calculations of micro- 
crystallite clusters (see, e.g., Refs. 2, 4, and 23 and references therein) again 
are reliable only at rather low temperatures, since the configurational entropy 
must be taken into account. ~24~ In order to account for the latter, which is 
produced by fluctuations in the precise microscopic structure and shape of the 
cluster, one has to compute cluster properties from a simulation where the 
cluster is put into a larger surrounding box, without prescribing a definite 
structure and shape for the cluster. Such simulations have been done by a 
variety of authors, (2a-al~ but several problems remain: 

(i) Counting of clusters which form spontaneously due to fluctuations in 
equilibrium states (2s~ yields useful results only for temperatures close to the 
critical point and for high supersaturations. 

(ii) Simulation of clusters with varying shape but precisely fixed cluster 
size I and constant thermodynamic variables ~26~ does not yield direct informa- 
tion on the free energy barrier (thus the free energy is obtained only by 
recording the energy over a range of variables up to some reference state, and 
performing suitable integrations). 

(iii) Simulations where all molecules within the box are counted as being 
part of the cluster ~4,27-~9~ may be unreliabl@ a~ since rather disconnected 
configurations which physically would correspond to several clusters are 
regarded as just one cluster. In addition, there is always some residual 
dependence of the cluster free energy on the size of the box, which has not 
yet been analyzed in sufficient detail. Thus it sometimes may be hard to judge 
the accuracy of these simulations, and it is not surprising that the discrepan- 
cies between recent Monte Carlo ~2a and molecular dynamics (29~ simulations 
are beyond the respective quoted error bars. 

The purpose of the present work is now twofold: First we give an 
analysis of the equilibrium of a cluster with the surrounding gas in a box of 
finite size (Section 2). The conditions are obtained under which this equili- 
brium is thermodynamically stable. It is shown that one can obtain informa- 
tion on the surface free energy of the cluster independent of the size of the 
box. In Section 3 we use this treatment to estimate the order of the approxi- 
mation which results from the treatment cited in (iii) above, where all 
molecules within the box are counted as being part of the cluster. In Section 4 
we show that our theory actually presents the basis for practical analysis of 
computer simulations, studying clusters of up to about 500 atoms in the two- 
dimensional lattice gas model, where stochastic interchanges of the occupation 
number of neighboring sites are performed. While this study is thus not 
immediately applicable to any real system, apart from clustering of atoms at 
planar surfaces, where our kinetics models surface diffusion, (32~ the model 
has distinct advantagcs for our purposes: (i) Both the chemical potential at 
the coexistence curve and the surface tension are known unambiguously, from 
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Onsager's solution. ~3a~ The existing, albeit small, uncertainties in the numerical 
values of both quantities for the more interesting Lennard-Jones fluids have a 
nonnegligible effect for clusters with critical sizes l* from 100 to 1000, of 
course, and thus make a reliable estimation of correction terms difficult. (ii) 
Due to the absence of degrees of freedom for any inertial motion in the lattice 
gas model with stochastic "diffusive" kinetics, the problems of rotat ion- 
translation corrections and "thermal  nonaccommodation effects" do not 
arise ;(1,3.4~ thus we can discuss the question of the extent to which the micro- 
scopic surface tension of a small cluster differs from the (macroscopic) 
surface tension of a flat, bulk surface, without the need to discuss these 
additional problems. We complement these simulation studies by low- 
temperature series expansions. In Section 5 we give our simulation results on 
the diffusivity of clusters, and tentatively interpret them in terms of several 
diffusion mechanisms. Section 6 contains our conclusions, and also an 
attempted speculative explanation of recent nucleation experiments. 

2, T H E R M O D Y N A M I C S  OF C L U S T E R - V A P O R  
E Q U I L I B R I U M  

While the thermodynamics of cluster-vapor equilibrium has been studied 
extensively in the literature, <1-4~ it is usual to consider equilibria either for 
constant chemical potential or in the thermodynamic limit. For our purposes 
it is essential, however, to consider the equilibrium at constant number of 
molecules N < oo in a finite volume V: As total density p we denote the ratio 
iV/V: Since we are interested in the dependence of this equilibrium on the size 
of  this volume, care has to be taken in not evoking thermodynamic relations 
which become valid only in the thermodynamic limit. 

The situation may be understood by referring to Fig. 1, where the Helm- 
holtz free energy F of the system is shown schematically as a function of  
cluster size l for three values of the chemical potential /xl < /z2 < /z3. For 
each value of/x, F increases up to the critical cluster size and then decreases 
again. However, because of the constraint of a fixed total particle number 
iV,/z and l are not independent, so that only the points indicated by solid dots 
are available to the system. The dash-dotted curve indicates the locus of such 
points; the thermodynamic equilibrium of the system is found at that point 
on the locus for which F is smallest. In this paper we locate this minimum by 
expansions about the coexistence line for which exact relations are known, 
exploiting the information on cluster properties which can be gained in this 
way. We start from the following relation for the grand potential f~ : 

f~(T, V,/x) = - /~V = f -  /xN (1) 

where T is the absolute temperature, and fi is a generalized pressure in a finite 
system, ~a4~ which reduces to the ordinary pressure p = -O~/~V[,,~ for 
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Fig. 1. Schematic plot of the free energy 
as a function of cluster size l and chemical 
potential t*. The curve shown as dashed- 
dotted indicates the states of the system 
with a fixed particle number N. 

Ft, 
/ 

/ /  

V - +  oo. We wish to expand Eq. (1) at chemical potent ial /x  = Ixc where bulk 
gas and liquid phases  coexist. We denote the density at the coexistence curve 
by pcoex = p(T, V, Ix = Ixc), and expand the well-known identity N = 
-(Sf l /~ix)r ,v  to second order in ix - Ix~, 

-@~/~ ix ) r .v  = N = Vp = Vp . . . .  + VX(Ix - Ixo) - �89 x - Ix~)2VC; 

1 /aagl~ , 1 ( a 2 f ~  [ (2) 
c - ~ \a ix3]~ ,v  x =- - ~  \ a i x 2 l ~ , v t  .=.o  

Similarly, introducing the grand potential  per unit  volume at the coexistence 
curve co(t~c, T, V), we expand Eq. (1) to third order,  

n~as(T, V, Ix) = V[o,~a~(m, r ,  V) + ( m  - Ix)o~ ~176 
- � 8 9  - I x ) ~ x ~  - ~ ( i x o  - I x ) 3 c ~ ]  ( 3 )  

f2~tq(T, V,/,)  = V[~o~q(ix~, T, V) + (ix~ - Ix)pgO~X 

- � 8 9  - I x )2XL - -~,(ix~ - I x ) a C L ]  ( 4 )  

We now assume periodic boundary conditions for  the volume V which con- 
tains the gas phase,  and assumes tempera tures  T low enough such that  the 
correlat ion length ~: of  f luctuations is much  smaller than  the linear dimension 
V TM of  our  d-dimensional  box. Analyses  of  finite-size effects show then 
that  ~aS> ~%~(ixc, T, V) - oog~(ix~, T, V--+ oo) oc e x p ( -  V1/a/~) << l, and similar 
relations hold for  the size dependence of  coa~q(/,~, T, V), p~o.~, p~o~, XG, XL, Cc, 
and CL. Since we will be interested in finite-size corrections of  order 1/V,  
which are asymptot ical ly  much  larger than  any corrections of  order  
exp(- -  V~Ia/f), we may  neglect the volume dependence of  all quantit ies within 
the square brackets  in Eqs. (3) and (4). 

We next consider a system of  N molecules which consists of  two sub- 
systems, l molecules in a liquid cluster and N - l molecules in the surrounding 
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gas, and neglect the interaction energy between the two subsystems. [This is 
rigorously correct in the lattice gas, where we may define a "cluster"  to be a 
group of atoms linked together by nearest neighbor bonds. Then by definition 
no bonds cross the cluster surface. For a suitable definition of clusters in 
continuum systems see, e.g., Refs. 2, 22, and 30. In any case the following 
analysis is not affected by details of the cluster definition.] The volume Vz 
occupied by the cluster is approximately proportional to the number of 
molecules it contains, i.e., 

V, -- V0(T, ff)l (5) 

Since our subsystems are then additive, the condition that the total mass is 
conserved is expressed as 

N = l + [V - Vo(T, tOl]pa(T, t0 

= / + [ v  M:r, ~)] [p~oo~ - (~o - ~)x~ - ~ (~o (6) 
J 

Of course, the part of the system that we identify as "g a s "  contains physical 
clusters as well; even at the low temperatures considered in the simulations to 
be described in Section 4 the spontaneous formation of dimers, trimers, etc., 
was observed. But for typical conditions the total mass contained in the 
cluster exceeds that of the remaining gas; thus no second cluster in the 
considered range of sizes can form, and no problem of identifying the cluster 
arises. 

Since 

1 1 
Vo( : r ,  ~ )  = M : r ,  ~ )  = p~OO~ _ (~c _ n ) x ~  - �89 - ~)~G, 

' [ (~-~)x,~ (~c-~)~ (~  ~ 1+ ptoox + p~oex 

Eq. (6) yields in leading order of p - p~oex 

i1 

+ pOsOexj] 

(7) 

(8) 
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In the thermodynamic limit V--> oo this relation gives the standard result 
/, - fro = (p - p~~ of course; for finite V it describes the reduction of 
chemical potential due to the formation of a liquid cluster. Equation (8) 
shows that for a given temperature, total density, and volume the size of the 
cluster I and the chemical potential/ ,  are not independent variables but rather 
depend on each other. 

From Eqs. (1) and (3) we obtain for the free energy of the gas phase in 
the system 

F ~  = [V - V0(T, ~)l][o,~M~c, T) + ( ~  - ~)p~~176 

- �89 -- IX)2Xa - ~(t*~ - if)ace] .4- (N - l)ff 
(9) 

V0(T, ~)I f~,~(T, V, ~,) (10) F, = Fr =~r + f f l +  

Note that we do not make any specific assumption about the "surface 
correction" Fr ~f, and thus Eq. (10) should rather be considered as a defini- 
tion of Fr Since the Helmholtz free energies of the two subsystems are 
additive (see also the discussion in Ref. 4), we have 

F = Fg~ + F, = F, ~'~'r .4- N/, -4- V(/,r - /,)p}o~,: 

- � 8 9  - ~ * ) ~  - -~vc~o,o - ~,)~ + w ~ M ~ c ,  :r) 

+ Vo(t,, :r)l[o,M~o, :r) - ~,~,~(n~, t) + (,~ - n) 
x ( A  oox - e~, o~ - �89 - x o ) ( m  - ~)~ 

- - ~ ( c ~  - c ~ ) ( f f ~  - f f ) q  ( 1 1 )  

Making use of the coexistence condition which defines ff~(T), 

we obtain from Eq. (11), using also Eq. (7), 

F - ~V~ - W=Mu~, T) 

. l i1  - ' s~176 

- ~ x ~ ( ~ - ~ c )  2 l - ~  I p~oo--~x-~j j + ~ c ~ ( * * - ~ c )  3 

x { 1 - ~ t / V  [1 + C s ( 2 - a ~ ] c - a  

+ 3 ~  1 . 4 . - - -  - -  
oeL xL R ~  

(12) 
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Using Eq. (8), we find that this expression becomes further 

F - N/x~ - Vcog,~(F~, T) 

v[ p~oox z( oSox~]~ 
= F?~f + ~-X~ p -  --p 2 - p - ~ ] j  

[ l/v( x, ps~ 
x 2 - ~ L  1 Xa p ~ ] J  

• 2 +~x--z p -  - ~  1 - ~ ] j  

• 1 - ~  1 - - ~ ! x ~  

x { 1 _  ~I/V [ I+~CL ( 2 - - 3 ~ )  

( ZL 2 Xe 2 p ~  + 3 ~  2 + - - -  
xL 

We next expand Eq. (13) in powers of I/V as 

F - NF~ - VoJg~(/x~, T) 

K. Binder and M. H. Kalos 

V p g o e x ) 2 (  CGp~Oex p _ p~oex] -- I (p -- p~oex) 
= F? "~' + ~ ( p -  1 + 3X2 ~ ]  X---~ 

{( ,,s oox] 2,,- ,,so,,,[6 ~<s~ 
x 2-~1 2 p2 ~ L\ x~pZ~ 

12IV ~1 - -  p~oex~ 2 [ - -  p(~oex |,[CGh, L~e~ 
+ 2X~ \ ~ ]  L 2 + p ;2 ~ \ xJ 

(23) 

c ,oex- _ '+~176 / 

2 2 - XLp?WX~n~~ 
1 c o e x /  eeex  I / 

-- PG /PL / J 

( [( c .... (  ,o~ t 3 / v  2 psoo'], I x,  psoo.] I 

(24) 

Equation (24) can be considered as a systematic expansion simultaneously in 
the two small variables I~ V and p - p~oex. Since we have kept only terms up 
to order (~e - t~) 3 in Eq. (I I), we keep also only terms up to third order in 
our small variables in Eq. (14). 



"" Crit ical  C lus te rs"  in a Supersa tura ted  V a p o r  371 

Since in thermal equilibrium at constant N, V, and T the free energy F 
must be a minimum, we require 

~ a e ~  (o - p~~176 - p~~176 ~176 
= \ - - g - - - I T -  xo 

{ 1~176 - i - ~  ,} 
- -  p~Oex [ CGpoLOeX 1 -- XLP~~ Oex] 

x 1 + 2 [ ~ - eo IP~ J 

+ //.__Vx~ \ {1 - ~?~U = f + s --~s176176 l. ~x C .... 

+ 2 oo~~---~ 1 - 

2 1 - XLp~/Xsps176176 
-1 -- p~Oe~/pZOex j j  

CGpL 1 -- - -  
x~ ~ \ P~~176 

(15) 

The solution of this equation yields the critical size l*. The condition that F 
is a minimum and not a maximum at l* is 

P %  1 o < ~-bY]N.v.TI ,=~. 

= \ - 5 7 r - / ~ [ , = ,  + ~ x ~  v 

x \ l + % o W  2 L T~ ~ T - ~ . . , _ p o  .P~ J ;  

+ --Xap~O~X ~ ~ ]  

Xap2 ~176215 X~ 2 

Since we have used an expansion which requires that (p - p~OO• << 1, 
the second term on the right-hand side is always positive (we need not be 
concerned with the third term here, since it is smaller by a factor of l*/V than 
the second one). However, since this term is proportional to the inverse of the 
volume, it can outweigh the negative term (~2F~Urf/Ol2)r only if V is not too 
large. As noted above, the equilibrium between a finite cluster and surround- 
ing (supersaturated) gas is always unstable in the thermodynamic limit. 

Before we apply Eq. (15) we have to check if the equilibrium described 
by this equation is actually stable or only metastable. For that purpose we 
have to compare the free energy, as given by Eq. (14) with l = l*, with the 
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free energy of a supersaturated gas without a cluster, assuming the same values 
of N, V, and T. Using Eq. (3), we find 

F ~  - N~e - V ~ e ( ~ ,  r )  
= g [ ( / x  - t z o ) ( p  - p~O~X) _ � 8 9  - tzo)  2 + ~ C a ( , f f  - /%)3] (17)  

and, using Eq. (2), 

_ pSex)~ 
F ~ s -  X ~ e -  Vo.~e(~, r ) =  V 0 2 ~  

cG ] 
+ 6xa---~ (p - p~OO08 

(18) 

From Eqs. (14) and (18) we conclude, keeping now quadratic terms in 
our small variables l! V and p - p~oex only and treating for simplicity the case 
of low temperatures where p~oox << p~oex, that 

l* AF - F - Fg~s ~ F{, ~rf - - -  (p - p~OeX) (19) 
XG 

while Eq. (16) simplifies with the same approximations to 

[ F . F r . q  I 1 (2o) 

In the same approximation Eq. (16) simplifies to 
( a f S ~  p _ p~oex _ z/v 

(21)  

so that the equilibrium is stable if 

AS < 0 (22) 

We discuss Eq. (22) only for the example where one approximates Fr ~rf by the 
"capillarity approximation," i.e., 

Fp ~f  = SdfjT)(l/Vap~~ z - aCa (23) 

where Sa and Va are the surface and volume of a d-dimensional unit sphere, 
andf~(T) is an effective surface tension. From Eqs. (21) and (23) it is easy to 
find that 

( 1 )  f~(T) (l .)~j~l* p~O~X) 
1 - ~l Sat,  VapL . . . . .  )t-z/aXa + -~ = ( l * ) ~ l a ( p -  (24) 

Since Eqs. (23), (22), and (19) lead to 

& A(r)  (25) (v,~o,!oe,:)----~_~,~ x~  < ( , ' * ) l "~ (e  - p~oex) 

we can use Eq. (24) to find the condition of stability 

1 f~(T)  (1,.~/a I* 
V .... ~i - 1/a < (26) 
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On the other hand, the condition for at least metastability, (82F/812)x,r,r > O, 
yields, with the help of Eqs. (20) and (23), the somewhat weaker condition 

1 (  1) f~(T) ( l . ) l /a l*  
7t 1 - 71 Sa (Vap~o~x)l_i/a < "~ (27) 

Both Eqs. (27) and (26) show once more that other than unstable equilibria 
are possible for finite values of l /V  only. The condition for metastability is 
weaker than the condition for stability by only a factor 1 - 1/d. Of course, 
this particular result relies on the very special assumption made in Eq. (23). 
However, the treatment is immediately generalized to the case where d in Eq. 
(20) is treated as an "effective dimensionality" of the clusters for the values of 
l under consideration, andf,(T) is then the appropriate "microscopic surface 
tension." 

In order to interpret the physical meaning of the equilibrium condition, 
Eq. (15), it is convenient to introduce the den sity p~ of the gas surrounding the 
cluster, i.e., 

Pa =- ( N -  I*)/VG, Va = V -  Vo(T, ~)l* = V -  I*/pL(T, t~) 

(28) 

From Eqs. (7), (28), and (8) it is easy to find the following expansion, keeping 
terms up to second order in the small quantities pa, 9}e~, l /V  only: 

l* l * / V  
p _ p~o~x = (p~ _ p~O~X) + V p~OOX pe (29) 

(15), we obtain by a straightforward Inserting this expression into Eq. 
calculation 

iarf  I / 0  . . . . .  o ooo = 
p2 o~x 

10~ o~ 1) 1 

(3o) 

In Eq. (30) all terms of higher than second order in the small variables pa, 
p~ ~ and l~ V have been omitted on the right-hand side. This neglect is legiti- 
mate since in Eq. (13) we have kept up to third-order terms, and by taking the 
derivative in Eq. (15) the highest order of terms taken into account consistently 
was reduced by one. Note that in contrast to what one expects from Eq. (15) 
at first sight, there are no l * / V  corrections in Eq. (30). 

Since at low temperatures pa - p~OeX << p~Oex one might expect that the 
correction in square brackets in Eq. (30) is negligible. However, this is not so: 
since -Co/xa  2 ,.~ I/p~ ~176 (in the ideal gas case this result would be precisely 
correct), the correction in square brackets is of order 0 0  - p~o~x)/p~oex, which 
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need not  be negligibly small. In order to elucidate this term, we use Eq. (29) 
in Eq. (8) to find 

1 + - -  (pa - p~OeX) (31) 
- ix~ ~ xe 2X~ ~ 

where again all terms higher than second order in the small quantit ies p~, 
p~Oex, and l/V have been omit ted on the r ight-hand side. Hence Eq. (30) can 
be rewritten as 

~ ] r l , *  = ( / x -  ~c) 1 - p ~ ]  (32) 

which is nothing else but the well-known " K e l v i n  equat ion."  (~) Note  that  the 
difference in bulk Gibbs  potential  between the liquid cluster and the surround-  
ing gas is l(/x - /~c)(1 - p~OeX/p~oex). The bulk Gibbs  potent ial  of  the liquid 
droplet  is (/x - tLc)l, the Gibbs  potential  of  the gas taking the same volume is 
(tz - ~ze)lp~~ ~ This correction factor  1 - p~oex/p~oex often is neglected 
but becomes impor tan t  if one treats nucleation close to the critical point.  

Finally we draw at tent ion to a consequence of the fact that  l and tz 
depend on each other via Eq. (8), and hence a further  correction in Eq. (15) 
may  arise due to an explicit dependence of  Fr urr on the chemical potential  t~. 
In  fact, we have 

( aFr = (0Fr (SF~ f ]  dt~ (33) --W-]~ \----g-]~.. + \  a~ 1~,,, a/ 

and using Eq. (8) this becomes in leading order  

(34) 
Since the ratio of  derivatives (aFF~=r/o~)ra/(aF~rf/al)T,, is of  order  I, we 
immediately  realize that  the correct ion on the r ight-hand side of  Eq. (34) is of  
order  l /V and hence small. Thus it is legitimate to est imate it by means of  the 
capillarity approximat ion ,  Eq. (23), where we now include a dependence of 
the surface tens ionf i (T,  t0 on the chemical  potential  t~. Then Eq. (34) can be 
rewrit ten more  explicitly as 

(35) 

In the Appendix  it is shown that  in the lattice gas at low temperaturesf~(T,  tz) 
is quadrat ic  in (tz - tz~), i.e., 

f~(T,/z) = f~(T,/z~) + �89 - tz~) z (36) 
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and where the leading term in the lowitemperature expansion of X~ is esti- 
mated. Since by our expansion in powers of (~ - t~o) in Eqs. (3), (4), and (12) 
we are restricted to the case where (/x - t~) is a small variable, the correction 
factor in Eq. (35) is of order (/x - txc)l/V and hence of second order in our 
small variables. Since the right-hand sides of Eqs. (30) and (32) are of first 
order in the small variables, use of Eqs. (35) and (36) would produce a term 
of third order only, which can be omitted, since other third-order terms have 
been neglected as well. 

We emphasize that while our treatment leading up to Eq. (23) is com- 
pletely general, the absence of a linear term in Eq. (36) may occur only in the 
lattice gas model due to its special symmetry properties (Appendix), and 
hence the correction in Eqs. (34) and (35) may be more important for other 
systems. In principle, Eqs. (32) and (34) allow a separate determination of 
both derivatives (~F~urf/~l)T,u and (~Fz~f/elz)r,~ by studying the equilibrium 
for the same value of l* in a range of values for V: the chemical potential 
difference ~* - /xc at which equilibrium is established should then have a 
linear variation with the variable l*/V. Then (eFr~f/6l)r,u follows from an 
extrapolation of this linear variation of tJ~* to l * /V  = 0, while (OFpU~f/Olz)r,, 
follows from the slope of dlz*/d(l*/V), as Eq. (35) shows. In practice, however, 
this procedure can be prohibitively difficult due to statistical inaccuracies in 
the numerical determination of t~* and l*. 

. E S T I M A T E S  FOR THE CLUSTER FREE ENERGY IN THE 
CLUSTER DEFIN IT ION DUE TO A B R A H A M  A N D  REISS 
E T  A L .  

Reiss et al. ~27~ and Abraham et aI. (4,28~ suggested that one might study 
a cluster by constructing a constraining sphere around its center of gravity; 
all N molecules within the sphere are counted as part of the cluster. In order 
to allow for fluctuations in cluster shape (and thus include configurational 
entropy contributions to the cluster free energy), it is necessary to make the 
volume Vofthis  sphere distinctly larger than the volume Vz defined in Eq. (5). 
While studies were made in the range from V ~ 2V~ to V ~ 103V~, it was 
suggested that the cluster free energy might be estimated by using V of the 
order of 10E.  We examine this prescription within the context of our treat- 
ment, comparing the free energy of our system of N - l* gas atoms and the 
cluster with l* atoms with the free energy of a cluster with N atoms. 

From Eqs. (4) and (t0) we have for a cluster of N atoms, by definition, 

FN = e~u,-~ + ~ N  + V0(T, ~)N[~o,,q(m, T, V) + (~c - ~)P~ . . . .  �89 - ~)2XL] 

(37) 
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Using Eq. (7), we can rewrite this as follows, keeping terms up to order  
(t~ - ~c) 2 only, 

FN = F} urf + ~N + V pioo--~ ~%~s(~c, T) - (~ - ~) 

p~Oex )(L I 

+ ff (~ - x~ + p~o~x G + p2oo--~]l ) 

(38) 
On the other hand we may  combine  Eqs. (13), (29), and (31) to obta in  

F ~ F p  "f + N~zo + Kc%~(~,  T) + 2--X~ (po - I - 

[ 1CG(p~ p~o~x)/(ll'/g'~] 
x 1 + 5Xo- ~ - p2ooxlj 

V 
z F?2 rf + N/xc + Vc%a~(/,~, T) + g Xa(/* - t*~) 2 (39) 

where Eq. (32) can be used to express / ,  - /x~ in terms of  (OFpure/al)rIz,. F r o m  
Eqs. (38) and (39) it is easy to find that  

F N - -  g = F} urf - -  F~, ~vf - Vc%a~(/x~, T) 1 - p ~  1 - ~ - x  ]1  

V < P [XL c%~(Ix~,T)( 2XL='~ ] ;  
- g x ~ O * - , * ~ ) ~  1 - ~  ~ +  e~OO~x ~ c ~ + - -  p~~176 

(40) 
We want  to find out  how well Fz~ is approx imated  by F;  i.e., we ask how small 
is the ratio (F - FN)/F2v ~f, to est imate the relative error of  F} ~rf. Since we are 
interested in the case where 1" >> 1 only and low temperatures ,  where the 
gas density is very small, we have N - l* <</*:  mos t  o f  the molecules within 
the constra ining sphere are contained in the cluster, and only a few in the 
surrounding gas. Hence we may  expand F} u~f, using once more  Eq. (29), 

F} ~-~r = g{, u~f + ~ !  p(N -- l*) z + ~ ,,Vpo_I ~ ]  

(41) 
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F r o m  Eqs. (32), (40), and (41) we hence obta in  

[ ( 
( w3(1 z*/v]_ 1 +  Do \l - - Xa(it Itc) 2 

(42) 
We note that because of Pc = p~oe~ + X~(it - Ito) + " ' "  the negative third 
te rm on the r ight-hand side of  Eq. (42) yields a small correction to the 
positive second te rm only. Note  that  '~g~s(it,c T) < 0, of  course. 

In the low-temperature  regime where the cluster definition due to Reiss 
et  al. (27) and A b r a h a m  et  al. <2a) is useful, we obtain  f rom Eq. (42) a numerical  
est imate for this ratio (FN --  F ) / F }  ~rf accurate  to at least abou t  + 50% by 
treat ing the gas phase at the coexistence curve as an ideal gas, and using the 
capillarity approx imat ion  in Eq. (32). Since for  V = 10V~, both  factors 
p/p~ ~ and ( l * / V ) / p 2  ~ yield corrections of  order 10-1 only, we approx imate  
Eq. (42) as follows: 

( F u  - F ) / V  ~ c%~,s(ffc, T) + (it - Itr - �89 - Itr 
= p~~ + (t t - Ito)p~ - �89176215 - fie) 2 (43) 

and hence we find, since Eqs. (23) and (32) yield F[. ~ = l* ( i t  - Ito)/(1 - 1 /d )  

N(it  - Itc)/(1 - 1/d) ,  

F%.  y -  F ~  : -  ( 1 -  d) 1 [ . . . . .  ~ [ i f -  I to '  + l o~o,~it- Ito] ;L 
(44) 

For  small (it - I t c )kBT it is seen tha t  the relative difference (FN -- F ) / F D  urf is 
of  the order of  (p~oox/p)/[(it _ ItD/k~T]. Since (it - Itc)/k~T--+ 0 as N - +  ~ ,  

this difference becomes appreciable  even if pcG~ is very small. This result is 
obvious  f rom Eq. (43) already, o f  course, since FN -- F oc V oc N ,  while 
F} ~f  oc N ~- a/a only: thus the rat io in Eq. (44) mus t  become large for large 
enough N. Thus  this cluster definition becomes very inaccurate even for tow 
temperatures ,  if the clusters are very large. However ,  in m a n y  cases of  interest 
N is not  so large and hence (it - I t o ) / k~T  is not  small. Then the difference 
(FN -- F ) / F D  u~f m a y b e  quite small, and a meaningful  es t imat ion of  FJ  ~rf f rom 
this definition becomes possible. In fact, for the " 1 2 - 6  Lennard-Jones  argon 
l iquid"  which has been studied (4,27) the parameters  to be used in Eq. (23), i.e., 
F ~  ~ f  = 4~rf~(T)(3NI4zrp~r~176 3 are for  T = 84 K, (4) f~(T) = 16.18 dyn/cm, 

3 Note that a factor 47r is missing in the corresponding expression of Eq. (9.5.5) on p. 216 
of Ref. 4. 
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p2 ~ = 2.05 x 10SS/cm 3. Thus f rom Eq. (32), i.e., (ff - ffc)/kBT = (2/3)F~"rf/ 

( N k s T ) ,  one readily obtains for N = 100, the largest size studied, that  
(~ - ~c)/kBT ~ 1.29. Since in the ideal gas case we have pc = p~oox exp[(ff - fie)/ 
ksT] ,  Eq. (44) becomes 

%_j + exp'- 
~'-3 p \tz - tz~ k s T  2 k s T  / z 2.51 P 

F r o m  the gas pressure at the coexistence curve, p~OeX = 595.35 Torr,  (4~ we 
estimate p~oex = p . . . .  / (kBT) = 6.90 x 10Zg/cm 3. Since p = p2~215 = 2.05 x 
1021/cm 3, we get (Fx - F ) / F }  urf ~ 0.85 x 10 -z. Thus one would get an 
unreliable estimate for F} u~f if one approximated FN by F in that case as done 
in Refs. 4 and 28, as expected in Ref. 30. For  the smallest size studied (N = 13) 
the same estimate yields (IN -- F)/Ffv "~f ~ 2.4 x 10 -1. Clearly, due to the 
approximat ions  made, these estimates are order-of-magnitude estimates only. 
But note that  one obtains a similar conclusion using the pressure that was 
actually obtained f rom the simulation, which was (Ref. 4, Fig. 9 .2)p  ~ 4 x 
10 ~ dyn/cm 2 ~ 300T or r  for V ~ 10Vt, implying pc ~ 3.5 x 10ZO/cm 3, 
p~oex ~ 0.96 x 1019/cm 3: This density is nearly an order of  magnitude smaller, 
and the resulting errors in F} "~f would be a few percent only. Presumably the 
former estimate is more  realistic, since f rom the radial density profiles 
observed <4,~7~ one notes that  pa/p2~ 10 -2 close to the surface of  the 
constraining box, while f rom O~ ~ = 6.9 x 1019/cm3 we get pc/p~ ~ = O~ ~  

exp[(/z - Iz~/kBT] ,,~ 1.25 x 10 -2. Finally we note that f rom ~ = - 1.5685 x 
10-13 erg we get p~oe~ = [(27rmkBT)Z/2/h]3 e x p ( ~ / k ~ T )  = 5 x 10~9/cm 3. F r o m  
these considerations we obtain two general conclusions:  (i) the cluster defini- 
t ion due to Reiss et al. and A b r a h a m  produces an error of  about  1 0 ~  in 
F} ur~ for gas densities exceeding p~oex/p~Oex ~ 10-3, while fo r low enough gas 
densities it clearly is accurate and very convenient;  (ii) for the choice V _< 10 Vz 
the gas density at the surface of  the box may  still be a bit larger than the equi- 
librium value pa, i.e., one cuts off the outer parts o f  the interface profile 
between cluster and surrounding gas, as the above comparison of  the observed 
density at the surface of  the box (~ and the outer estimates for pa show. 

Finally we consider the p V diagram of  the system consisting of  the cluster 
and the surrounding gas. F r o m  Eqs. (1) and (39) we conclude [~og~,(Fc, T) = 
-p~~  

,6 = p~oex + N(~  - tZc) - F~ u~r 1 
V ~ x~(~ - t~) ~ 

z p~Oex + (/~ -- /z~)[N -V/*/(1 - l/d)] X~ (/z - /z~) ~ (45) 

For  small V all molecules are part  o f  the liquid phase. The pressure is then 
very large and decreases with increasing volume [this regime is of  course not 
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described by Eq. (45), which holds for ( l * / V ) / p ~  ~176 << 1]. When the pressure 
has decreased down to p~O0X, the two-phase regime starts. Since the gas phase 
is supersaturated, we have t~ > ~c; but since at low temperatures for not too 
small ( l * / V ) / p ~  ~176 still most of the molecules are part of the liquid cluster, 
N - l* << l* and hence the factor N - /*/(1 - l i d )  < 0: thus the second 
term on the right-hand side of Eq. (45) is negative, and for small enough 
pbOex also fi < 0. Since l* decreases with increasing V, the second term on the 
right-hand side of Eq. (45) changes sign for some large enough V, and so does 
ft. In between one then has a minimum fimin < 0. On the other hand, for very 
large V all molecules of the system are in the gas phase; the pressure then is 
positive and decreases with V as k B T N / V .  Hence, in between, the pressure 
has a maximumfim~x > 0. Since Eq. (45) is rewritten with the help of Eq. (29) 
a s  

= p~OOX + p~oox(~ _ m) + (t~ - m) 2 - (~ - ~c) ) ~  - 

V'* ( - ~  d - 1 )  = P a  - (/z - t ~ )  p~o , ,  - 

(46) 

we note that it is a reasonable approximation to identifypa withfi in the regime 
where ( l * / V ) / p ~  ~  << l, (/x - t z ~ ) / k B T < <  1. 

4. MONTE CARLO S IMULATION OF "CRIT ICAL CLUSTERS" 
IN THE T W O - D I M E N S I O N A L  LATTICE GAS 

The two-dimensional lattice gas (square lattice) is not a realistic model 
for any physical system, except perhaps for the study of adsorption on 
surfaces, assuming that the adatoms may only occupy "preferred sites" 
forming a square lattice. (a2,a6) Even then the assumption that one has only 
nearest neighbor attractive interaction between adatoms apart from the 
binding forces to the substrate will be an oversimplification. The same is true 
for the approximation where crystal growth is described in terms of a Kossel 
model (see Ref. 37 for a review), and where at low temperatures and small 
values of the chemical potential difference one makes the further assumption 
that the (n + 1)th layer starts forming only after the nth layer has been fully 
completed. (37) However, for our purposes, the model has many advantages 
(cf. also Ref. 38): 

(i) Due to the absence of any inertial motion in the lattice gas model, 
the problem of rotation-translation corrections does not arise, and thus we 
can concentrate on the question of the extent to which the "microscopic 
surface tension" of a small cluster differs from the macroscopic surface 
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tension f~(T,/x) of a flat surface between bulk phases. Fortunately both/x c 
and fs(T,  I~c) are known rigorously from Onsager's exact solution. (aa~ 

(ii) Other quantities entering our expressions, like p~oex, p~oox, Xa, Xa, etc., 
are either also known rigorously (39~ or with high numerical precision from 
low-temperature series expansions. (4~ For details of the transcription <41~ 
from the " language"  appropriate to an Ising ferromagnet ~8.39~ to the lattice 
gas " language"  see the Appendix. 

(iii) For very small cluster sizes (l = 1, 2 . . . . .  6), where the quasi- 
macroscopic treatment of Section 2 does not apply, one can easily estimate the 
cluster free energies Fz quite reliably from low-temperature series expansions 
(see also the Appendix). 

(iv) Since the dynamics of the lattice gas model is described in terms of 
a Markovian master equation appropriate for stochastic evaporation and 
condensation of atoms, ~a8'~2~ it is correct to treat the equilibrium between 
cluster and surrounding gas as strictly isothermal, the " thermal  nonaccom- 
modation problem"(1.14~ does not arise, and a meaningful comparison with 
classical nucleation theory is possible. 

(v) The computer simulation by means of Monte Carlo methods (45~ can 
be very efficiently applied to this problem. 

(vi) Albeit unrealistic, the lattice gas is much more realistic than percola- 
tion models, (4~ where clusters form via random mixing, and hence the inter- 
play between entropy and energy is not at all described. 

The computer simulations are done as follows: As initial condition, a 
fully compact cluster with l~ occupied sites is generated and put in the center 
of an L x L square lattice. Usually this initial cluster is chosen to have 
circular shape. Then N~ " g a s "  sites are randomly chosen to be occupied. 
This initial condition then defines the density p = (I~ + NO/L 2 for the 
particular run. The Monte Carlo run is performed utilizing the Kawasaki 
nearest neighbor exchange mechanism/42~ which was previously used for 
studies of the phase separation kinetics (45-~7~ and is described there in detail. 
In most runs the temperature was 2J /kBT = 1.5 (i.e., T/Tc ~ 0.59), where J 
is the nearest neighbor interaction energy. A few runs with 2J /kBT = 2 (i.e., 
T/Tc ~ 0.44) were also performed. The surfaces of the box are connected by 
periodic boundary conditions to avoid surface effects: i.e., an atom diffusing 
out of the box at one side enters again on the opposite side of the box. Since 
the exchange O~ ~ PJ, PJ ~ P~ (P~ = 0, 1 is the local density at lattice site i; 
see the Appendix) conserves the total density, the analysis of Section 2 is 
applicable. One then lets the system develop until the equilibrium described 
there is reached: if the initial gas density pc ~ = N~/(L 2 - l~) is higher than the 
oa that characterizes the equilibrium, gas atoms have to condense at the 
cluster and hence l* > l~, while for pa ~ < Pa atoms have to evaporate f rom 
the cluster in order to establish equilibrium, and l* < l~. 
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Fig. 2. Size of cluster l and number of monomers plotted vs time for the initial conditions 
N~ = 41, l~ = 96 (left part) and N~ = 60, l~ = 60 (right part). Dashed lines indicate the 
estimates for the thermal equilibrium. 

Typically, runs with 600,000 exchanges were made, the first 150,000 of  
which were discarded, since equilibrium was not  yet reached. Figure 2 gives 
two typical examples of  time evolutions. The large fluctuations a round l* are 
expected f rom Eqs. (16) and (20), which show that  the min imum of  F at 
l = l* is very flat. The large time constant  over which these fluctuations are 
correlated can be unders tood by recent theories on cluster dynamics<~8~: the 
relaxation time increases very strongly with cluster size. The strong decrease 
of  the number  N1 of  monomers  at the beginning of  the simulation is due to 
the format ion of  dimers, trimers, etc., in the gas phase. I f  the initial state is 
too  far away f rom equilibrium, clusters o f  intermediate size are formed in the 
gas phase, which are incorporated into the main large cluster at a very slow 
rate only (see right par t  of  Fig. 2, where l* reaches the equilibrium much 
slower than N J .  In  such cases it may  happen that  some "d r i f t "  of  the 
"equ i l ib r ium"  is observed th roughout  the run, which then has to be wholly 
discarded. Hence it is impor tant  to choose the initial state not too far f rom 
the expected final state, to avoid these slow relaxation effects. 

Clearly, simple runs as shown in Fig. 2 do not  yield accurate estimates of  
] and tV1, and hence F, via (/~ - ixo)/k~T = ln(/V1/Nf ~ [cf. Eq. (A18)], where 
Nf  ~176 = ( L  2 - ])n~ ~ Thus the average of  several runs has to be taken, in 
order to obtain a meaningful accuracy. Figure 3 summarizes these averaged 
results for 2 J / k B T  = 1.5. At  that  temperature we have p~OeX = 3.11 x 10 -~ 
[cf. Eq. (A14)] and hence the factor  (1 - pc eeX/p~Oex) may be neglected in Eqs. 
(30) and (32). Runs were made with L = 25 up to L = 120, with densities # 
in the range f rom about  1 x 10 -2 up to 8 x 10 -2, which yielded average 
cluster sizes i in the range f rom l = 26 to ] = 520. Since for [ ~< 100 the 



382 K. Binder and M.  H. Kalos 

O: 

00~ 

x 
�9 • 

~ " ~  o o 

�89 ; 1'0 210 50 1;0 260 5 ;~  I 

Fig. 3. Log-log plot of (1/k~T)(OF~U':*/Ol)r vs l. Open dots are the results from the use of 
Eq. (47), while solid dots result from Eq. (32), and the crosses represent AFdkr~T as 
defined in Eq. (48). Dashed curve represents the capillarity approximation, Eq. (49). 
Solid squares represent the results of Eq. (32) corrected with Eq. (A31). The solid curve 
represents an estimate based on Eq. (52c). 

expansion parameter  (p~ - p~oox)/p~o~x was not  very small, we reinterpret Eq. 

(30) as follows : 

I 

p~oex 
,~ In pa (47) Xa p~oex 

by approximating the factor  Ca/xa 2 - 1/p~ ~176 ~ - 1 / p ~  ~ and interpreting 
the resulting expression as the first two terms of  the series expansion of  
ln(p/o~~ While this procedure may seem somewhat  ambiguous,  no such 
ambiguity arises when Eq. (32) is used, ~ - ~c being determined as kBT  
ln(fil/n~ ~ as noted above. Since (/~ - i~c)/k~T is not  small for ] ~< 100, it 
would be very inaccurate to use the linear approximat ion (t~ - t~c)/k~T 
(ill - n~~176 ~ Both pa and fil are observed in the simulations. In  the ideal 
gas case, Eqs. (32) and (47) should yield identical results. Since the density 
of  dimers at the coexistence curve 2 << n . . . .  n~ ~ (cf. the Appendix),  and also 
the observed dimer density fi2 << fi~ is in fact observed in the simulations, we 
expect that  the difference in (OFp~f/el)r lz .  as determined f rom Eqs. (32)and 
(47) should not  exceed the statistical errors. Figure 3 shows that  this expecta- 
t ion is indeed correct. Since (/~ - ixc)/knT is not  very small in our case, we 
have to worry about  a possible influence o f  the correction factor in Eq. (35). 
Calculating this correction f rom Eq. (A31), one obtains the solid squares 
rather than the solid circles in Fig. 3. Apar t  f rom the case ] = 26, this correc- 
tion seems to be negligible in compar ison with the statistical error. 
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The Monte Carlo results have been complemented at small l by using the 
series expansions for &(/xc, T) described in the Appendix and by defining 

AFl = l(i[Tsurf surf ~ * , + 1  - F ~ _ I )  ( 48 )  

where the F~ ~urf are calculated according to Eq. (A23). These estimates for 
AFz/kBT "~ (1/k~T) OF?~re/Ot are included in Fig. 3 for I = 1 , . . . ,  7. Itis seen 
that the Monte Carlo data seem to extrapolate smoothly toward these values. 

We also include the result for the capillarity approximation, Eq. (23), 
which yields in our case 

1 [OF~'~ ~l,2f~(T) l_~/~ .85l_~/2 
k~T \ ~ ]  r = ~ ~ 1 (49) 

where Eq. (A24) is used. It is seen that Eq. (49) yields values which are too 
small, at least for l ~< 70. This behavior is just opposite to what one would 
expect from Tolman-like corrections. The reason for this failure is obvious 
when we compare the cluster concentration n~ ~" that would follow from the 
use of Eqs. (23) and (A24) for the concentration of small clusters, 

n? ~p -- e x p [ -  2 ( r r / ) ~ I 2 ~ ]  

exp I 4J(rrl)l/Zk~3T + 4(rrl)l/2e-2Zm~T] 

exp( -4J(~/)~/2\l-k~f ) [ 1 +  4(rcl)~12e-2Z%r + O(e-4'/k"r)] 

(50) 
with the low-temperature expansion, Eq. (A21), which we rewrite as 

4Jxz\ e~le_4Zk~r (51) n~ = az exp - k - ~ )  [1 + + O(e-SZk~r)] 

First we note that xz > (hr) 1/2 for all /(see Fig. 7); thus the capillarity approxi- 
mation underestimates the actual surface energy of the clusters. Second we 
note that the leading corrections (due to surface entropy) are of order e-4S/k~r; 
no terms of order e-Z!/% r enter. Thus the capillarity approximation over- 
estimates the surface entropy. Both effects tend to make Fp urf and hence also 
(OFFU~f/Ol)r[z. too small, as observed in Fig. 3. 

Since we are dealing with a square lattice, we could think of improving 
on the capillarity approximation by not assuming clusters of circular shape 
as done in Eqs. (23), (49), and (50), but rather clusters whose shape is a 
square, the configuration of minimum energy on the lattice considered. This 
amounts to replacing the factor v/~ in Eqs. (49) and (50) by a factor 2. How- 
ever, even then one obtains from Eq. (50) the correct x, for l = 1, 4, 9, only, 
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while still x~ > (2l) 1/2 for l = 2, 3, 5, 6, 7, 8, etc. Thus for many cluster sizes 
the minimum-energy configurations involve more broken bonds than expected 
in terms of an extrapolation from flat surfaces. 

This conclusion is corroborated by a direct Monte Carlo study of the 
mean surface energy of clusters, which we obtain as a by-product of our 
study (Fig. 4). According to the capillarity approximation the surface energy 
at low temperatures should be given by 

E J 4 J  = (~rl) 1/2 (52a) 

which again fails to reproduce correctly both the data and the low-temperature 
expansion results. But note that at the low temperatures studied here we have 
a relation E~ oc 11/2 for l ~> 10, as expected from previous work. (26) Indeed, 
our results only prove the capillarity approximation to be wrong if the 
bulk surface tension is used. With an effective surface tension fitted to the 
simulation results one finds reasonable agreement with the classical prediction 
F f  ~rf oc l z/2 for 4 ~< l <~ 500, as Figs. 3 and 4 show. This conclusion agrees 
with findings of Bauchspiess and Stauffer (44~ on the simpler but much less 
realistic percolation model. But so far no simple and reliable prescription 
exists to calculate this "microscopic surface tension" from any bulk data. 

The data of Fig. 4 can be used to estimate the coefficient E~(l)  in the 
expansion 

Ez(T) = Ez(0)[1 + Ea(l)e-4:tk~ T + O(e-8:Jk~r)] (52b) 

which in turn yields the leading term in the low-temperature expansion of 
F~ ~u~f, i.e., 

Ffur f / kBT  = [Ez(O)/kBT][1 - (k~T/4J)E~(l)e-4SlkB ~ + . . . ]  

(52c) 

10C 

5C 
E, 
4J 

2~ 

1C 

5 

2 

" ~ �9 ] 20 

Fig. 4. Log-log plot of Ed4J vs. l. Open and solid dots represent Monte Carlo results, 
while the crosses result from the series expansion (A21). The zero-temperature results 
(triangles) are the exact values of x~ in Eq. (A21). Dashed curve represents the capillarity 
approximation, Eq. (52). 
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The estimate for (1/k~T) OFF~f/~l that follows from Fig. 4 via Eq. (52c) is 
included as a solid line in Fig. 3. It  is seen to be in much better agreement with 
the simulation data than is the capillarity approximation, Eq. (49). This fact 
proves the internal consistency of our data. 

5. A N A L Y S I S  O F  T H E  C L U S T E R  D I F F U S I V I T Y  

The exchange 0~ -+ &, pJ -+ p~ between neighboring sites in the lattice gas 
model leads to an effective "diffusion" of the clusters, i.e., their center of 
gravity performs some random walk. Of  course, the diffusivity Dt of clusters 
(which measures the mean square displacement of the cluster center of gravity 
per unit time) decreases very strongly with cluster size. The diffusion and 
coagulation of clusters has been invoked as a mechanism of phase-separation 
kinetics/4a,49~ It  has been suggested that Dt should follow a power law 
D~ oc l-Y,~49> and various estimates for y have been made. <46,48,49~ Since the 
precise behavior of D~ has interesting consequences for these theories on 
phase separation kinetics/~8.49~ we estimate Dz from the Monte Carlo simula- 
tions. In a previous study ~45~ Dz was estimated from clusters which appeared 
in the course of the phase separation process and which continually changed 
size. As a consequence precise estimates of diffusivity were not possible. In 
the present case, where clusters are in equilibrium, there is no net change in 
cluster size, and a more accurate treatment is possible. 

We first discuss the proposed mechanisms (Fig. 5). Binder and Stauffer <49~ 
suggested that at low temperatures processes should dominate where an 
atom at the surface moves without energy cost (Fig. 5A) or evaporates with 
low energy cost (energy change 2J) and reimpinges on the cluster surface 
again (Fig. 5B). In both cases the displacement of the cluster center of gravity 
is of  order l -1,  and since a number ocl 1- l/a surface sites may participate in 
the process, we get a diffusivity (A1 is a constant of order unity) <~a,49~ D~ oc 
l-Y1, i.e., 

D~ = Ale-2Z%Tll-1/a(1-1)2= Ale-2:/%Tl-l-1/a[ -1, Yl = 1 + l id 

(53) 
At higher temperatures two more mechanisms become important:  if " g a s "  
bubbles within the cluster move, one also produces displacements of the 
cluster center of gravity of order 1-1 (Fig. 5C). A number of n J  "~ e-aZkBrl 
sites of the cluster participate in this process, and hence ~6~ (A~ is another 
constant of  order unity) 

D~ = A2e- 8Z%rl(l - -  [ ) ~ = A2e- 8ZkBrl - 1, Y2 = 1 (54) 

This mechanism does not dominate asymptotically for large l, however, since 
another mechanism with still smaller y exists. ~ Suppose that on one side of a 

4 We are greatly indebted to J. Percus for a helpful discussion on this point. 
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D) Fig. 5. Schematic illustration of four differ- 
ent mechanisms of cluster diffusion in a 
square lattice gas. For explanations see the 
text. 

cluster an a tom evaporates,  while on the other side an a tom condenses out  of  
the gas phase on it (Fig. 5D). N o w  the displacement of  the cluster center of  
gravity is of  order llla/l = l - l+i /a;  since the rate of  this process is propor-  
tional to the gas density (e-8J/k~r) and the number  of  surface sites (ocl 1-1/a), 
we obtain (A3 is another  constant  of  order unity) 

Dz = A 3 e - s s l k B T l l - l / a ( l - l + l l a ) 2  = A a e - s J / k B T l l l + l / a ,  Y3 = 1 - 1/d 

(55) 
While the rate described by Eq. (54) is generally small in comparison to that  
of  Eq. (55), we expect some crossover between y~ = 1 + 1/d and Ya = 1 - 
1/d due to the different temperature-dependent  prefactors of  Eqs. (55) and 
(53) : For  small 1 we expect Dz to be close to Eq. (53), since its prefactor is much 
larger at low temperatures,  while Eq. (55) should dominate at large I. Hence 
on a log- log  plot of  D~ vs l one should observe an apparent  exponent Yeff 
between these limits 1 - l id  and 1 + l/d, and there should also be some 
variation of  Yeff with temperature.  Figure 6 shows that  this expectation is 
indeed borne out. At  first values of  Yefr close to unity were interpreted <46~ as 
evidence for Eq. (54). However,  we now believe that  the interpretation in 
terms of  the crossover is correct. A simplified description o f  the crossover is 
obtained f rom Eqs. (53) and (55) as (A is a parameter  independent of  l) 

Dl ~ A l - l - a l a ( l  + e-6J/k~l)  (56) 

Fitting A at both temperatures where calculations are available accounts for 
D~ in the crossover regime (Fig. 6) as well. 
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6. CONCLUSIONS 

We summarize the main results of this investigation as follows: 
(i) A cluster of size l (with l 1/a >> ~:, the correlation length of density 

fluctuations) in a box Vwith constant total density can be in stable equilibrium 
with the surrounding gas for a suitable range of values l/V, although the 
equilibrium is unstable for l /V-+ 0 (Section 2). Neglecting corrections of 
order exp(-Vila/6) ,  which are very small in our case, quasimacroscopic 
thermodynamic considerations apply to describe the equilibrium. We find 
then that the equilibrium is precisely given in terms of the Kelvin equation 
(32) when one neglects the interaction forces between the cluster and sur- 
rounding gas, thus treating both cluster and gas as additive subsystems (but 
taking the excluded volume into account). The intuitive explanation for this 
absence of any l/V corrections is that the cluster has no " informat ion"  that 
the total system is finite when one neglects the e x p ( -  Va/a/~) corrections: thus 
the equilibrium condition remains the same, although the chemical potential 
ff now is not fixed but fluctuating in a finite system at constant average 
density. 

(ii) A cluster definition where the gas atoms surrounding the cluster in 
the box are counted as being part of the cluster is analyzed in detail by our 
theory (Section 3). It is shown that an accurate estimate for Fr} ~r~ can be 
obtained only if the gas density is smaller than 10 -3 times the liquid density. 
Then this definition is preferable because it is very convenient to use. But it is 
suspected from our analysis that published surface free energies for argon 
clusters at T = 84 K may be in error by several percent, and hence it is 
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unclear to what extent conclusions regarding the validity of the Lothe-Pound 
theory are possible on the basis of these results. 

(iii) Performing computer simulations of clusters in the two-dimensional 
lattice gas model, it is shown that our analysis (Section 2) in fact presents a 
helpful tool for their interpretation (Section 4). It is shown that the capillarity 
approximation underest imates the surface free energy of small clusters, in 
contrast to what one would expect from Tolman-like corrections. Performing 
approximate low-temperature expansions for the concentrations of very small 
clusters (Appendix), we show that this enhancement of the free energy of 
formation of small clusters is due to two sources: The use of the surface 
tension for flat surfaces tends to underestimate the number of "broken 
bonds," i.e., the surface energy, and to overestimate the contributions of 
possible fluctuations, i.e., the surface entropy. We speculate that in real gas- 
fluid systems this enhancement of the cluster formation free energy due to the 
larger "microscopic surface tension" may be cancelled numerically to a large 
extent in many systems by the decrease of the cluster-formation free energy 
due to the Lothe-Pound translation-rotation corrections. Such an accidental 
cancellation could be the reason why the capillarity approximation describes 
nucleation well in many real systems (experiments of Katz et al.). In fact, in 
nucleation experiments close to Tc (where Lothe-Pound corrections are 
negligible due to the large size of the critical cluster) a dramatic failure of the 
capillarity approximation was observed, the cluster-formation free energies 
being distinctly larger, consistent with our treatment. It is expected that the 
"microscopic surface tension" decreases with increasing cluster size and may 
reach the macroscopic surface tension of a flat surface for cluster linear 
dimensions of about 10s e , as suggested earlier by Binder and Stauffer. In this 
connection it is gratifying to note that very recently the surface tension of 
curved liquid surfaces has been measured directly, and was in fact larger than 
expected from the capillarity approximation/TM 

(iv) As a by-product, the variation of the cluster diffusivity Dz with 
cluster size I is obtained (Section 5). It is shown that a crossover occurs from 
D~ oc l - 1 - l/a at small l to Dz oc 1 - 1 + ~/a at large l; the position of the crossover 
depends on temperature. 

A P P E N D I X .  S T A T I S T I C A L  M E C H A N I C S  OF THE LATTICE GAS 

In this appendix we summarize relations, most of which are well 
known; (4~ a coherent description of them is necessary to clarify the notation 
and make our analysis transparent for the reader. We start by considering the 
Ising Hamiltonian of a ferromagnet on a lattice (sites are labeled by index i), 

~ n ~  = - J  ~ cry% -- H ~  cry, as = _+1 (A1) 
<Li>  i 

where the symbol <i, j )  means that all nearest neighbor pairs i, j are summed 
once. d is the exchange energy, and H is the magnetic field (measured in units 
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g/xB = 1). Since the Hamiltonian is invariant under the transformation 
H--~ - H, {cry} --+ { -  ~r~}, the free energy has the symmetry 

F(T, H) = F(T, - H) (A2) 

Due to the particle-hole symmetry of the lattice gas, Eq. (A2) leads to a 
relation between the free energies of "lattice gas" and "lattice fluid" phases. 
One obtains the lattice gas model from Eq. (A1) by introducing a local 
density variable Pc (=0,  1) by 

~i = 1 - 2p~ (A3) 

with which Eq. (1) is transformed into 

~sing = --�89 HV + (2H + 2qY) ~ p~ - 4J ~ O~pj (A4) 
i <i,y> 

In Eq. (A4), q denotes the coordination number of the lattice, which has V 
sites (i.e., we measure the volume in units of the elementary cell). From Eq. 
(A3) we may relate the magnetization/spin M = <at) and density p = (p~) = 
N/V as 

M = 1 - 2p (A5) 

Now we consider the free energy F~(T, V, H) of the Ising magnet, 

- F~ Tr exp Z -= exp ~ - ~  ~, = • 1) kBT 

= exp k ~  qJV + HV Tr exp 2H + 2qJ~, 

exp 4J • ~BT ~ P'PJ (A6) 
<i,/> 

Since N = ~p~, we have to define the chemical potential ~ of the lattice gas as 

ix = - 2 H  - 2qJ = - 2 H  + tzr tzr = -2qJ  (A7) 

where/xr is the chemical potential at the coexistence curve, and where we note 
that the coexistence between spin-up and spin-down magnetic phases (which 
occurs at H = 0) corresponds to the coexistence between the "lattice gas" 
and "lattice fluid" phases. Hence the free energy is rewritten as 

-F~ [�89 HV,  (Nlz)  
exPk- ~ = exp~ ~ ) ~ exp_ - k ~  

x Tr exp p~pj {p~ = 0, 1 at fixed N} 
< "  " 

[�89 + HV] 
= e x p ~  ~:~-ig ) ~ e x p ( k ~ T ) Z L G ( N ,  V, T) 

[�89 + HV'~ ( _  ~2ha ~ 
= exp~ k~-7~ ) exp \ kBT] (A8) 
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where ZLa is the canonic part i t ion function of  the lattice gas, and f2La = 
FLG - -  IXN its grand potential.  Thus Eq. (A8) implies 

F~(T, H )  = - l q J V  - H V  + f2LG(T , V, IX) (A9) 

Since we may  define f2LF(T, V,/z) 

F~(T, H < O) = - � 8 9  + [gl v + U2LF(T , V, IX) (A10) 

we find f rom Eqs. (A2), (A9) and (A10) that  

f2LF(T, V, IX I> Ixc) -- - 2 H V  + f2Le(T, V, tz ~< IXc) 

-- (Ix -- IXc)V + f2La(T, V, IX <~ IX~) ( A l l )  

Since p = - ( 1 / V ) ( ~ / 0 i x ) r , v ,  we then have 

pL(T, Ix~) = 1 -- pa(T, Ix~), i.e., p~o~x = 1 - p~oex (A12) 

Note  that  Eq. (A11) connects ~)LG at some AIX = t~c -- IX > 0 with f2L~. at  
-A/~;  hence we have to reverse the sign when taking the derivative with 
respect to AIX. One finds fur thermore  f rom Eq. (A11) that  

XL = Xa, CL = - C a  (A13) 

Hence it suffices to consider p~(T, i~c), Xa, and Ca in the following. F r o m  Ref. 
40 we note the exact series expansions in terms of  the low-temperature  variable 
u = e x p ( - 4 J / k B T )  for  the square lattice 

p~oex = u~(1 + 4u + 17u 2 + 76u a + 357u ~ + 1736u 5 + 8659u 6 + . . . )  
(A14) 

Xa = (u2/kBT)(  1 + 8u + 60u 2 + 416u 3 + 2791u 4 + 18,296u 5 

+ 118,016u 6 + . - . )  (A15) 

These expansions not  only yield pbo,x, Xe with ye ry  high precision, but  they 
also contain informat ion  on the low-temperature  expansions for  the concen- 
t rat ions nz(ixc, T )  of  clusters containing l spins for  small l. This point  is seen 
by generalizing the equat ion of  state for  an ideal lattice gas 

[2ga(T, V, Ix) = - k B T V n ~ ( T ,  Ix) (A16) 

where we denote the density of  individual gas a toms O as " m o n o m e r  dens i ty"  
n~, to an ideal mixture of  clusters of  various sizes l 

f2na(T, V, IX) = - k B T V ~ ,  nz(T, Ix) (117)  
l 

Since we assume the various clusters are in some kind of  associat ion-dissocia-  
t ion equil ibrium with each other, a unique chemical potent ial  Ix rather  than a 
whole set {Ixz} is sufficient. We now assume 

nz(Ix, T) = nz(Ixe, T)exp[l ( tz  - Ixc)/kBT] (A18) 

in order  to satisfy the relation 

-(~)LC/~Ix)r,V = V ~ ,  ln~(T, Ix) = N (119) 
I 
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which is an exact relation, if the clusters are defined in terms of "con tou r s "  
around groups of atoms linked together via nearest neighbor bonds on the 
lattice. <26,48~ Hence we have the relations 

1 12n~(T, t~o) (A20) p~o~x = ,=~ ln,(T, ~ ) ,  Xa = kBTs 

In order to calculate the nz(T, t~) we now introduce the low-temperature series 
expansions 

( t n~(T, tz~)= a,u ~:̀  1 + ~ ,  c~,eu ~ (A21) 
/r / 

Because of Eqs. (A14), (A15), (A20), and (A21) these coefficients c~,~ should 
satisfy the sum rules (Cz,o - 1) 

1 ~mp~o~x 
rnL ~ , , :o = ~ aflcz,m-x,, 

l 

1 3mxa I = ~ azl2cz'm-x' 
m! Gb/m u = 0  l 

(A22) 

where the sums run over all l consistent with the requirement m >/ x~. We 
determine at, xz by constructing the minimum-energy configuration for each 
cluster size (Fig. 7). For a mathematical discussion of this problem see Ref. 
50. In order to use Eq. (A21) we finally have to determine the coefficients 
c~,k. Constructing low-temperature expansions for higher derivatives of 
f2Lo(T, V, ix) with respect to/x, one would get additional sum rules from Eq. 
(A18). However, it would be impossible to take all these sum rules consistently 
into account, since Eq. (A17) is not exact (see also Ref. 51). Since p~o.x and 
Xa are the most relevant quantities in our thermodynamic treatment in 
Section 2, it is reasonable to construct "effective" cluster concentrations 

t t~ ~ 
t tJ,~ ~, ~ ~ ,~_nterface 
t t LL ~I 'kink 

{' t ~ J '~linterface 

f f t l~/ 
t t fJ ~J 
f {'1~' $ flu 

f fl$ 
f_fJ$ 

fN  ~ r 

I d:2 ] I d:3 I 

Fig. 7. Minimum-energy configurations for clusters in the lattice gas model. While for 
I ~< 4 all a~ geometrically distinct configurations are shown, only one configuration is 
shown for l = 5,6,7. Note that the number of broken bonds is 2xz. 
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nz(T, ixc) which fit p~oex and Xa. In order to treat all cluster sizes with com- 
parable accuracy, we cut of f the  summat ion  in Eq. (A21) for k > 2, which is a 
good  approximat ion since u -+  0 as T--~ 0. F r o m  Eqs. (A14), (A15), (A21), 
and (A22) we then immediately find Cll = c12 = 0, c2i = - 5 / 4 .  For  m = 5 
an ambiguity arises since both x3 = x4 = 4 (Fig. 7). We then assume that  the 
correction c4~ is solely due to the contr ibut ion of  the less compact  clusters 
with I = 4, and 10 broken bonds (10 clusters of  which exist). Hence a4 = 10, 
and thus c31 = 8/9, c~2 = - 8 .  Similarly, f rom c51 = 13/4, c61 = 18 we find 
c32 = - 8 ,  c42 = - 2 1 / 2 .  Having thus obtained a truncated series for the 
nz(T, t~c), we then obtain f rom Eq. (A21) the cluster free energy F{ urf via the 
definition 

F{~rf(/% T) = - knTln  nz(T, tXc) (A23) 

Next  we consider the interface free energyfi(T, ~). F r o m  the exact solution (3a~ 
we have 

l+~uu 
f~(ixe, T )  = 2J  - k s  Tin - -  ~ 2 J  - 2kBTe-2S/% r + O(e-4Z~s r) 

l - v ~ u  

(A24) 

While the term 2J  is the interface (free) energy at T = 0 where the interface 
is perfectly flat, the term -2kBTe-2J/k~ r can be considered as the ideal gas 
law for " k i n k s "  in the interface (Fig. 8). Each kink requires an excitation 
energy 2J, and may go either to the right or to the left (thus we have a factor 2). 
Hence fi(/x~, T) ~ 2J  + fklnk~ = 2J  -- 2kBTpkink, defining an effective kink 
density Pk~k = exp(-- 2J/kBT).  In  the three-dimensional simple cubic lattice, 
the interface is two dimensional and the excitations dominat ing at low tem- 
peratures are not  " s t e p s "  but  rather small isolated clusters (Fig. 8). This dif- 
ference is due to the fact that  the interface for d = 2 is rough at all T > 0, 
while it is not  rough for  d = 3 and low enough temperatures. (52) For  d -- 3 
and T - +  0 the leading term is then, denoting monomers  at the right of  the 
interface as n~+(~, T) and monomers  at the left as n~-(tL, t), 

f~(l~, T )  = 2 J  - kBT[n,+(i  x, T )  + n~-(t~, T)] 

- /~ (A25) = 2 J -  2kBTe-SZk~ ~" cosh ]2~T- 

and hence we find that  for T--~ 0 and t~ -+  t~r 

( ~ )  = - 1~-2kBTt% e_ s~/k~ (A26) 

which leads to Eq. (36). In  two dimensions a low-temperature expansion of  
this type does not  exist, since the interface is rough  for all T > 0. Since the 
energy of  single kinks would be infinite for /z  # tz~, we may treat two s u c c e s -  
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Fig. 8. Typical interface configurations at low 
temperatures for both d = 2 and d = 3, showing 
typical fluctuations: kinks (d = 2) and clusters, 
either to the right (+) or left ( - )  of the interface. 
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sive kinks going into opposite direction as a "'cluster." Since the density of 
kinks goes to zero at T---> 0, the typical sizes [ of these "clusters"  becomes 
very large. Hence we may write approximately for d = 2 

L(ix, 
l 

IX - Ixc'~ (127) "~ 2 J  - 2k~3T]nz(ffc, T )  cosh ] 2 - ~ 7 T  ] 

We note that nz(ix~, 7") = e-4J/~r,  independent of  l, since two kinks are 
involved. Since [ ,~ exp(2J/kr~T),  the inverse of the kink density Pklnk, we 
obtain 

f~(tz, T )  ~ 2 J  - 2 k B T e -  2J/~r~ r cosh(e2~Ik~ ~"/x - Ixc~ (A28) 
"~ 2 k B T  ] 

which is only roughly correct due to the approximation in Eq. (A27), but 
reduces to the correct equation (A24) for Ix = Ixc. Hence we expect that 

(~f~(ix, T ) ~ , ~  i x -  IX~ e2.Tl~r (A29) \ ~ix / r 2 k ~ T  

apart  f rom factors of  order unity in which we are not interested. Equation 
(A29) again leads to Eq. (36). 
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Equat ion  (A29) implies a divergence of  the " s u r f a c e "  susceptibility xs 
in Eq. (36) as T - +  0, and hence the contr ibut ion of  this t e rm must  be treated 
with care. However ,  we think that  the t rea tment  in Eqs. (A27)-(A29),  which 
is appropr ia te  for  a flat interface, substantial ly overest imates Xs for  a small 
cluster. In  fact, the limited interface of  a small cluster does not  allow it to 
have interface kinks widely separated f rom each other as implied by ] 
exp(2J /k~T)  used above,  but  again only rather  small " in ter face  clusters"  
may  be fo rmed  as' in the three-dimensional  case. Thus  we assume that  for  
small clusters we should use in Eq. (27) the te rm with l = 1 only, which 
yields 

(c~f2ff(/~, T) )  ~ t ~ -  U~ e_4Z~r  (A30) 
T - 2 k B T  

which is a result analogous  to Eq. (A26). Using Eq. (A30) in Eq. (35) yields 
finally 

[~F~Ur~ = [OFlsurf~ [ I ~ - -  l~c l e-4"rm~ T 
1 , ~ ] r  [ ~ ] r , .  \1 + k--~f P ( 2 J f / k ~ a ]  (A31) 

A C K N O W L E D G M E N T S  

We thank  J. K. Percus for  a valuable conversat ion about  cluster diffus- 
ivity mechanisms and H. Mf i l l e r -Krumbhaar  and D. Stauffer for  valuable 
comments  and careful reading of  the manuscript .  

R E F E R E N C E S  

1. (a) A. C. Zettlemoyer, ed., Nucleation (Marcel Dekker, New York, 1969); (b) A. C. 
Zettlemoyer, ed., Nucleation Phenomena (Elsevier, New York, 1977); esp. articles by 
H. Reiss, p. 1, and R. Kikuchi, p. 67. 

2. F. H. Stillinger, J. Chem. Phys. 38:1486 (1963). 
3. J. J. Burton, in Statistical Mechanics, Modern Theoretical Chemistry, Vol. 5, V. J. 

Berne, ed. (Plenum, New York, 1977). 
4. F. F. Abraham, Homogeneous Nucleation Theory (Academic Press, New York, 

1974). 
5. K. Binder and D. Stauffer, Adv. Phys. 25:343 (1976). 
6. J. L. Katz, C. J. Scoppa, N. G. Kumar, and P. Mirabel, J. Chem. Phys. 62:448 

(1975); see also G. M. Point, Nat. Bur. Std. ( U.S.), J. Phys. Chem. Ref. Data 1:119 
(1972); J. L. Katz, C. J. Scoppa, N. G. Kumar, and P. Mirabel, Disc. Faraday Soe. 
61:83 (1976). 

7. A. W. Castleman, Jr., Nucleation and molecular clustering about ions, Univ. 
Colorado preprint; A. W. Castleman, Jr., P. M. Holland, and R. G. Keesee, J. Chem. 
Phys. (1978), in press. 

8. R. B. Heady and J. W. Cahn, J. Chem. Phys. $8:896 (1973). 
9. J. S. Huang, W. I. Goldburg, and M. R. Moldover, Phys. Rev. Lett. 34:639 (t975); 

W. I. Goldburg and J. S. Huang, in Physics of  Nonequilibrium Systems, T. Riste, ed. 
(Plenum Press, New York, 1975), p. 87. 



"Cri t ical  Clusters" in a Supersaturated Vapor 395 

10. R. C. Tolman, J. Chem. Phys. 17:118, 333 (1949). 
11. J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17:338 (1949). 
12. L. Dufour and R. Defay, Thermodynamics of Clouds (Academic Press, New York, 

1963). 
13. J. Lothe and G. M. Pound, J. Chem. Phys. 38:2080 (1962). 
14. J. Feder, K. C. Russell, J. Lothe, and G. M. Pound, Adv. Phys. 15:117 (1966). 
15. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28:258 (1958); 31:688 (1959). 
16. K. W. Sarkies and N. E. Frankel, J. Chem. Phys. 54:433 (1971); Phys. Rev. A 11 : 1724 

(1975). 
17. J. S. Langer and L. A. Turski, Phys. Rev. A 8:3230 (1973); K. Kawasaki, Y. Stat. 

Phys. 12:365 (1975). 
18. C. S. Kiang and D. Stauffer, in Ref. 1 b;see also C. S. Kiang and D. Stauffer, Z. Phys. 

235:130 (1970). 
19. M. E. Fisher, Physics 3:255 (1967). 
20. A. Eggington, C. S. Kiang, D. Stauffer, and G. H. Walker, Phys. Rev. Lett. 26 : 820 

(1971); C. S. Kiang, D. Stauffer, G. H. Walker, O. P. Purl, T. D. Wise, Jr., and 
E. M. Patterson, Y. Atmos. Sci. 28:1112 (1971). 

21. P. Hamill, C. S. Kiang, and D. Stauffer, Chem. Phys. 28:209 (1974). 
22. H. P. Gillis, D. C. Marvin, and H. Reiss, J. Chem. Phys. 66:214, 223 (1977). 
23. M. R. Hoare and P. Pal, Adv. Phys. 24:645 (1975). 
24. J. J. Burton, Acta Met. 21:1255 (1973). 
25. E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B 6:2777 (1972); H. Miiller- 

Krumbhaar, Phys. Lett. A 48:459 (1974); A. Sur, J. L. Lebowitz, J. Marro, and 
M. H. Kalos, Phys. Rev. B 15:3014 (1977). 

26. K. Binder and D. Stauffer, J. Stat. Phys. 6:49 (1972); K. Binder, Ann. Phys. 98:390 
(1976). 

27. H. Reiss, J. L. Katz, and E. R. Cohen, J. Chem. Phys. 48:5553 (1968). 
28. J. K. Lee, J. A. Barker, and F. F. Abraham, J. Chem. Phys. 58:3166 (1973); F. F. 

Abraham, J. Chem. Phys. 61 : 1221 (1974). 
29. D. J. McGinty, J. Chem. Phys. 58:4733 (1973). 
30. K. Binder, J. Chem. Phys. 63:2265 (1975). 
31. M. Rao, B. J. Berne, and M. H. Kalos, J. Chem. Phys. 68:1325 (1978). 
32. K. Binder, P. Mirold, and M. H. Kalos, Le Vide 185 (Suppl . ) : l l2  (1977). 
33. L. Onsager, Phys. Rev. 65:117 (1944). 
34. T. L. Hill, Thermodynamics of Small Systems (Benjamin, New York, 1963/1964). 
35. M. E. Fisher, in CriticalPhenomena, M. S. Green, ed. (Academic, New York, 1971). 
36. K. Binder and D. P. Landau, Surf. Sei. 61:577 (1976). 
37. H. Mtiller-Krumbhaar, in Current Topics in Materials Science, Vol. 1, E. Kaldis, ed. 

(North-Holland, Amsterdam, 1978), p. 1. 
38. K. Binder, in Ref. lb, p. 279. 
39. C. N. Yang~Phys. Rev. 85:809 (1952). 
40. C. Domb, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. 

Green, eds. (Academic, New York, 1974), p. 357. 
41. C. N. Yang and T. D. Lee, Phys. Rev. 87:404 (1952); K. Huang, Statistical Me- 

chanics (Wiley, New York, 1963). 
42. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and 

M. S. Green, eds. (Academic, New York, 1972). 
43. K. Binder, ed., Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1978). 
44. K. R. Bauchspiess and D. Stauffer, J. Aerosol Sci. (1978). 
45. A. B. Bortz, M. H. Kalos, J. L. Lebowitz, and M. A. Zendejas, Phys. Rev. B 10:535 



396 K. Binder and M. H. Kalos 

(1974) ; J. Maroo, A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, Phys. Rev. B 12:2000 
(1975); A. Sur et al., Ref. 25. 

46. M. Rao, M. H. Kalos, J. L. Lebowitz, and J. Marro, Phys. Rev. B 13:7325 (1976); 
M. Rao, M. H. Kalos, J. L. Lebowitz, and J. Marro, in Computer Simulation for 
Materials Applications; R. J. Arsenault, J. R. Beeler, and J. A. Simmons, eds. (NBS, 
Geithersburg, Md., 1976), p. 180. 

47. J. Marro, J. L. Lebowitz, and M, H. Kalos, preprint; M. H. Kalos, J. L. Lebowitz, 
O. Penrose, and A. Sur, J. Stat. Phys. 18:39 (1978); O. Penrose, J. L. Lebowitz, 
J. Marro, M. H. Kalos, and A. Sur, Y. Stat. Phys. 19:243 (1978). 

48. K. Binder, D. Stauffer, and H. Mfiller-Krumbhaar, Phys. Rev. B 12:5261 (1975); 
K. Binder, Phys. Rev. B 15:4425 (1977). 

49. K. Binder and D. Stauffer, Phys. Rev. Lett. 33 : 1006 (1974) ; P. Mirold and K. Binder, 
Acta Met. 25:1435 (1977); K. Binder, C. Billotet, and P. Mirold, Z. Phys. B 30:183 
(1978). 

50. F. Harary and H. Harborth, J. Comb. Inf. Syst. Sci. 1:1 (1976). 
51. M. F. Sykes and D. J. Gaunt, J. Phys. A 9:2131 (1976). 
52. G. Gallavotti, Nuovo Cimento 2:133 (1972). 
53. L. R. Fisher and J. N. Israelachviti, Nature 277:548 (1979). 


